WP6 Progress

William Shields

(william.shields@rhul.ac.uk)

LhARA Collaboration Meeting #7

8th April 2025

WP6 Progress

C. Whyte, yesterday:

MILESTONES

Task Name	Start	Finish	Resource Names
WPA	Tue 01/10/24	Mon 30/06/25	
Task 7	Tue 01/10/24	Fri 30/05/25	J. Parsons
7.1 Develop beamline and bespoke facilities at SCAPA for radiobiology experimentation	Tue 01/10/24	Fri 30/05/25	
7.2 Preliminary radiobiology results at SCAPA	Tue 01/10/24	Fri 30/05/25	
Ta sk 9	Tue 01/10/24	Fri 30/05/25	R. Gray
9.1 Demonstration of beam delivery to end station at SCAPA	Tue 01/10/24	Fri 30/05/25	
Task 4	Mon 30/06/25	Mon 30/06/25	J. Bamber
4.1 Report on Ion Acoustic Results		Mon 30/06/25	
Task 5	Mon 30/06/25	Mon 30/06/25	R. Amos,T. Price
5.1 Deliver PoPLaR end-station	Mon 30/06/25	Mon 30/06/25	
WPB	Tue 01/10/24	Mon 30/06/25	
Task 2	Mon 30/06/25	Mon 30/06/25	
2.1 Assessment of beam performance during PoPLaR experiment on SCAPA	Mon 30/06/25	Mon 30/06/25	
Task 3	Mon 30/06/25	Mon 30/06/25	
3.1 Progress report on increased voltage penning trap simulations and operation	Mon 30/06/25	Mon 30/06/25	
Task 6	Mon 30/06/25	Mon 30/06/25	
6.1 Review of FFA R&D work	Mon 30/06/25	Mon 30/06/25	
WPC	Tue 01/10/24	Mon 30/06/25	
Task 1	Mon 07/04/25	Tue 08/04/25	C. Pugh,C. Whyte
1.1 Initial PoPLaR and LhARA update: Collaboration Meeting	Mon 07/04/25	Tue 08/04/25	
Task 8	Wed 30/04/25	Mon 30/06/25	P. Price 2
8.1 Peer group meeting		Wed 30/04/25	
8.2 Benefits map for LhARA		Mon 30/06/25	

- FFA Review Meeting February 26th 2025.
 - Report draft nearly complete, to be sent to reviewers asap.

WP6 Progress

- Stage 1 status update & Stage 2 injection line (me)

- Stage 1 beam delivery (Matt)

- FFA status update (Jaroslaw)

- FFA magnet progress (Ta-Jen)

- Engineering & Integration (Clive)

LhARA: Stage 1 and FFA Injection Line

William Shields

(william.shields@rhul.ac.uk)

LhARA Collaboration Meeting #7

8th April 2025

LhARA: Layout

- Updated FFA & injection line designs.

Stage 1: Layout

- Locations and key dimensions defined :
 - Gabor lens
 - Arc magnets
 - RF cavities
 - Collimators
 - Corrector magnets
 - Vacuum valves
 - Wall current monitors

- Profile monitors
- Shielding walls
- Radiation shutters
- Octupole
- Beam dump
- Stage 2 switching magnet

- No major changes
- Stage 1 beam delivery
 - Matt Pereira & Rehanak Razak

ROYAL HOLLOWAY

Stage 1 Emittance

- Methodology: -
 - Generate 15 MeV \pm 2% beam (LhARALinearOptics)
 - Track 5cm assuming a charge neutral beam.
 - 2mm radial filter
 - Track 5cm with space charge -
 - 2.87mm radial filter _
- Nozzle for maintaining vacuum between target housing & Gabor lens

Beam Property	Parameterised Beam, θ _s = 11°		
	Horizontal	Vertical	
TWISS α	-355	-357	
TWISS β (m)	35.35	35.51	
Emittance (m rad)	5.91e-8	5.87e-8	
Beam Size (m)	1.43e-3	1.43e-3	

At the injection line start: $\epsilon_{x,y} \sim 4.3e-6$

Why is the emittance so much larger downstream?

Emittance Growth from Solenoids

- Emittance growth from capture fields, space charge not modelled.
 - GPT emittance jumps due to recording beam in fringe fields.
 - Gabor lens limited to radial E-field (plasma), no confinement fields.

Fringe Modelling

- Solenoid fringe fields known to have a significant impact on transverse beam dynamics
 - Linear & nonlinear effects.
 - BDSIM modelling:
 - Hard-edged solenoid body
 - Thin integrated fringe kicks
 - Field maps in Matt's talk.
- Gabor lens only modelled as hard edged, radial field.
 - Is the longitudinal distribution of the e- cloud understood? Realistically not hard-edged?
 - Is there significant impact on the ion beam dynamics from these Gabor lens "fringes"?
 - Simulations required.

Solenoid Aberrations

- Spherical aberrations:
 - Result from the radial variation of the longitudinal solenoid field
 - Stronger focusing force at larger radii
 - <u>Hard to mitigate</u>

- Chromatic aberrations:
 - Result from the energy spread of the particle beam
 - Stronger focusing of lower energies, weaker focusing of higher energies.

- Quadrature contributions to beam size:

$$R_f^2 = \left(\frac{\varepsilon}{R_0}f\right)^2 + \left(2R_0\frac{\Delta E}{E}\right)^2 + (C_s R_0^3)^2$$

Sinha, G. et al., Sci Rep 14, 9778 (2024).

 $\begin{array}{l} R_f: \mbox{ radius at focal plane} \\ \epsilon: \mbox{ emittance} \\ R_0: \mbox{ initial beam radius} \\ f: \mbox{ focal length} \\ \frac{\Delta P}{P}: \mbox{ energy spread} \\ C_s: \mbox{ spherical aberration coefficient} \end{array}$

10

Zero Energy Spread

- Very clear chromatic contribution to the transverse emittance.
- Cannot mitigate without impacting dose rate.

Emittance Growth In Literature

- Emittance control in rf cavities and solenoids, PRSTAB 12, 024210 (2009).
 - DOI: <u>10.1103/PhysRevSTAB.12.024201</u>
- LINAC4, broadly similar beam parameters to LhARA
 - 6.4 mm radius (rms).
 - Space charge negligible, 95 KeV, energy spread 0.25%.
- <u>"The higher the beam</u> <u>divergence at the entrance of a</u> <u>solenoid, the higher the</u> <u>emittance increase".</u>
- LhARA:
 - $X'_{rms} \simeq Y'_{rms} = 14.39 \, mrad$
 - Highest solenoid field: 1.4T

FIG. 8. (Color) Increase of emittance in solenoidal channels, B=0.6 T. Top: initial emittance 8.0π mm mrad. Bottom: initial emittance 4.5π mm mrad.

FIG. 9. (Color) Increase of emittance in solenoidal channels, B=0.36 T. Top: initial emittance 8.0π mm mrad. Bottom: initial emittance 4.5π mm mrad.

- Could decreasing LhARA's initial emittance reduce downstream emittance growth?

Reduced Initial Divergence

- Test - factor 2 reduction in X'_{rms} -> factor ~4 reduction in emittance.

PMQs for Capture

- Current beam parameters:

- Aim: <u>reduce α </u> at the nozzle entrance but not at the expense of significant losses

- Move the nozzle downstream

PMQs for Capture

- Complex beam dynamics:
 - Broad proton & ion spectrum
 - Co-propagating with electrons
 - Earlier PMQ transverse charge separation
 - Longitudinal drift separation

ROYAL HOLLOWAY

- Considerations: space charge, number of quads, losses, PM demagnetisation
- More modelling!

Stage 1 Optics for Stage 2 Injection

- Challenges meeting baseline injection line beam parameters
 - At switching dipole: $\varepsilon_{x,y} \sim 4.3e-6$,
 - Target: $\alpha_{x,y} = 0$, $\beta_{x,y} \sim 25$ m. Challenging to achieve.
 - Solutions prioritise $\alpha_{x,y}$

Nominal Injection Line Model

Nominal Injection Line Optics

Optimised Injection Line Optics

- Injection line is flexible, handles alternative initial conditions.

Injection Line Collimation

ROYAL HOLLOWAY

- 1) 0.4m between dipoles 2 & 3 (in stage 1 room)
- 2) 0.6m between dipole 4 & downstream quadrupole.
- 3) 0.4m between dipoles 6 & 7.

Modelling in GPT (Space Charge)

Laser-hybrid Accelerator for Radiobiological Applications

- Solenoid aberrations contribute to stage 1 emittance growth.

- PMQ study planned to reduce initial emittance.

- Flexible injection line model, space charge modelling remains a challenge.

