

Laser-driven source (WPB): Progress review and future outlook

R. Gray (Strathclyde), N.Dover (Imperial) on behalf of all WP2 contributors

LhARA Collaboration Meeting #7, 7th April 2025

Laser driven ion source for LhARA

- High energy (e.g. ~15 MeV p+, 4 MeV/u C6+) from source
- Needs to operate at 10 Hz for long periods
- Aiming to deliver 10⁹ protons or 10⁸ carbon ions per shot, eventually other ions

Overview of aims

Overview of aims

Work Package 1.2

T.S. Dascalu¹, N.P. Dover³, R.J. Gray^{2,4}

Work Package 1.2 T.S. Dascalu¹, E. Boella^{1,2}, N.P. Dover³, R.J. Gray^{2,4}

Updated laser parameters - more energy!

Old specification (Aymar et al.)

TABLE 1 | Design parameters of the components of the LhARA facility.

Parameter	Value or range	Unit
Laser driven proton and ion source		
Laser power	100	TW
Laser energy	2.5	J
Laser pulse length	25	fs
Laser rep. rate	10	Hz
Required maximum proton energy	15	MeV

Updated laser parameters - more energy!

Old specification (Aymar et al.)

TABLE 1 Design parameters of the components of the LhARA facility.

Parameter	Value or	Unit
	range	
Laser driven proton and ion source		
Laser power	100	TW
Laser energy	2.5	J
Laser pulse length	25	fs
Laser rep. rate	10	Hz
Required maximum proton energy	15	MeV

- Initial specification overoptimistic for ion production
- We updated it for the CDR big increase in laser energy

New specification (CDR)

Parameter	Value	Unit
Laser Parameters		
Central wavelength	800	$\mathbf{n}\mathbf{m}$
Energy before compressor	> 18	\mathbf{J}
Energy stability (RMS)	< 2	%
Energy stability (RMS over 12 hours)	< 5	%
Pulse Length (FWHM)	< 50	\mathbf{fs}
Pulse length stability (RMS)	< 5	%
Rep. rate	10	Hz
Contrast at 5 ps	10^{-8}	
Contrast at 10 ps	10^{-9}	
Contrast at 100 ps	10^{-10}	
Laser delivery parameters		
Energy on target	> 10	\mathbf{J}
Focal spot size (FWHM)	< 3	$\mu { m m}$
Strehl ratio (Measured)	> 0.5	-
Angle of incidence	30	0
Pointing stability	< 5	$\mu \mathrm{rad}$

Table 1.1: Envisioned laser specification for ITRF.

Importance of higher laser energy

From R. Gray - SCAPA results

Importance of higher laser energy

From R. Gray -SCAPA results

Initial specification - insufficient particle number

Table 3: Summary of the baseline parameters for the LhARA proton source as predicted by high-fidelity hy drodynamic and 3-D kinetic simulations (at normal laser incidence).

From Milestone Report 2:1 - from simulations performed by T. Dascalu

	Parameter	Value	Unit
Realistic	Cutoff energy	21.5	${ m MeV}$
conditions	Particle number per pulse ($15.0 \pm 0.5 \mathrm{MeV}$)	3.1×10^8	
	RMS beam divergence ($>1 MeV$)	52	mrad
	RMS beam divergence ($15.0 \pm 0.5 \mathrm{MeV}$)	32	mrad
	Max. emission half opening angle $(15.0 \pm 0.5 \mathrm{MeV})$	141	mrad
	Emittance [‡]	0.133	mm-mrad

Particle number far too low!

- Current spec E=15 MeV +- 2%, angular acceptance 15 mrad
- Particles going into capture <10⁸!
- Need to boost numbers -> increase laser energy significantly
- (Would help if bandwidth & angular acceptance increased)

Going to even higher laser energy?

- 18 J on target -> DRACO laser
- Reliable generation of maximum energies up > 50 MeV using TNSA
- >10¹⁰ protons per MeV sr up to ~30 MeV
 - (Although still <10⁹ protons for LhARA capture parameters!)

Or stabilising advanced acceleration mechanisms?

- Same laser even higher proton energies
- Going beyond TNSA
 - Stability is an outstanding issue?
 - Targetry also more complex!
- But, could enable in-vivo studies even without a stage 2 if the flux is high enough!

High repetition targets for ion sources

Tape drives:

- Significant experience with tape drives
- Should be suitable for 10 Hz operation for short periods
- Debris and target replacement will be problems for long term operation

High repetition targets for ion sources

Liquid jets

Kim+, Nature Comms 14:2328 (2023) *Streeter+, Nature Comms* 16:1004 (2025)

High repetition targets for ion sources

Liquid jets

Kim+, Nature Comms 14:2328 (2023) *Streeter+, Nature Comms* 16:1004 (2025)

Cryogenic targets

Obst+, Scientific Reports 7:10248 (2017)

Single shot diagnostics capable of 10 Hz operation

- Proton energy / flux, spatial variation (particularly 10-15 MeV)
- Heavier ion energy / flux, spatial variation (few MeV/u)
- Auxiliary diagnostics (electrons, plasma, x-ray, laser)

Single shot diagnostics capable of 10 Hz operation

- Proton energy / flux, spatial variation (particularly 10-15 MeV)
- Heavier ion energy / flux, spatial variation (few MeV/u)
- Auxiliary diagnostics (electrons, plasma, x-ray, laser)

Techniques

- Thomson parabola spectometers
- Beam profilers / PROBIES
- Time-of-flight spectrometry
- Laser metrology, spatial & temporal
- Target/debris monitoring

Single shot diagnostics capable of 10 Hz operation

- Proton energy / flux, spatial variation (particularly 10-15 MeV)
- Heavier ion energy / flux, spatial variation (few MeV/u)
- Auxiliary diagnostics (electrons, plasma, x-ray, laser)

Techniques

- Thomson parabola spectometers
- Beam profilers / PROBIES
- Time-of-flight spectrometry
- Laser metrology, spatial & temporal
- Target/debris monitoring

Detectors/calibration

- Scintillators
- CCD/CMOS
- Cross calibration with at reference beam lines or calibrated sources
- Long term operation/radiation damage

Single shot diagnostics capable of 10 Hz operation

- Proton energy / flux, spatial variation (particularly 10-15 MeV)
- Heavier ion energy / flux, spatial variation (few MeV/u)
- Auxiliary diagnostics (electrons, plasma, x-ray, laser)

Techniques

- Thomson parabola spectometers
- Beam profilers / PROBIES
- Time-of-flight spectrometry
- Laser metrology, spatial & temporal
- Target/debris monitoring

Detectors/calibration

- Scintillators
- CCD/CMOS
- Cross calibration with at reference beam lines or calibrated sources
- Long term operation/radiation damage

Analysis

- Fast analysis techniques
- Integration into control systems for stabilisation & optimisation

Current R&D examples

Current R&D examples

Current R&D examples

12

Can we run long term with high stability?

From R. Gray -SCAPA results

Can we run long term with high stability :

From R. Gray -

SCAPA results

Average Spectrum (Kapton)

4

6

8

Energy Shifted (MeV)

10

12

14

Can we run long term with high stability :

1.00

Can we run long term with high stability :

Strategies for source optimisation

See more details in Milestone Report 2:1 - from simulations performed by T. Dascalu

Thickness control

Strategies for source optimisation

See more details in Milestone Report 2:1 - from simulations performed by T. Dascalu

Thickness control

14

Strategies for source optimisation

See more details in Milestone Report 2:1 - from simulations performed by T. Dascalu

Where next?

- Ongoing work domestically and overseas to develop source
 - High rep laser
 - Novel targets
 - Fast single shot diagnostics
 - New acceleration regimes
- Existing and upcoming UK facilities offer opportunities for future projects
 - SCAPA
 - EPAC
 - Smaller university based systems at QUB, Imperial, etc
- Many overseas user facilities open to proposals for source related applications
 - ELI facilities (especially ELIMAIA / ELIMED at ELI-Beamlines)
 - BELLA (LBNL)
 - ZEUS (Michigan)
 - And others...