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Accelerators in Physics
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= First accelerators built in 1920s/30s Collaboration
= Accelerating protons, ions and electrons
= Positrons in 1960s
= Antiprotons in 1980s

= Tools for fundamental physics

= Hadron colliders
= E.g. LHC
= “Discovery machines”

= Electron positron colliders
= E.g. Large Electron Positron Collider (LEP)
= “Precision machines”

= Growing interest in building muon collider
= Muons first accelerated in 2017 - new tech
= Why muons? How?
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Why Muons
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= Proton collision energy is shared between quarks
= Effective energy significantly reduced

= Electrons cannot reach high energy due to synchrotron
radiation

= Low mass particles emit x-rays when they are bent
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Another angle
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Figure 1.9.1: Ratio of luminosity to wall plug power compared to several e "¢~ machines.
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= Muons very efficient delivery of luminosity
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Physics Engagement
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Muon Collider

Proton Driver
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SC LINAC RLA 1,2 RCS 1,2,3 &4 3 TeV Collider
10 TeV Collider

= MW-class proton driver - target
= Pions produced; decay to muons
= Muon capture and cooling

= Acceleration to TeV & Collisions

= Designed for high energy while maximising luminosity

Luminosity is key



Proton Driver
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Beam creation and Acceleration Accumulation and Compression Transport

Increasing Charge Density =

= Current proton driver design
"= Linac » ~ O(millisecond) H- pulse
= Accumulator -» O(microsecond) proton pulse
= Compressor = O(nanosecond) proton pulse
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MuC Target
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= Protons on target —» pions -» muons
= Graphite target takes proton beam to produce pions

= Heavily shielded, very high field solenoid captures it and 1t -
= Target similar to T2HK/Dune Phase 2
= Solenoid comparable to spherical tokamak solenoids
= Alternatives for higher power

= Liquid metal
= Tungsten Powder
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Beam brightness
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= QOrderly beam of protons

= Pions leave the target in many directions
= Pions decay in many different positions

= Low brightness beam

= High emittance beam
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lonisation Cooling
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= Beam loses energy in absorbing material
= Absorber removes momentum in all directions
= RF cavity replaces momentum only in longitudinal direction
* End up with beam that is more straight

= Multiple Coulomb scattering from nucleus ruins the effect
= Mitigate with tight focussing
= Mitigate with low-Z materials
= Equilibrium emittance where MCS completely cancels the

cooling
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Emittance exchange
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= |nitial beam is narrow with some momentum spread

= Low transverse emittance and high longitudinal emittance
= Beam follows curved trajectory in dipole

= Higher momentum particles have higher radius trajectory

= Beam leaves dipole wider with energy-position correlation
= Beam goes through wedge shaped absorber

= Beam leaves wider without energy-position correlation

» High transverse emittance and low longitudinal emittance
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Rectilinear Cooling
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= 6D Cooling
= Combined function dipole-solenoid magnets
= Compact lattice - RF integrated into magnet cryostat
= Lithium Hydride or IH2 absorbers
= Careful field shaping to control position of stop-bands
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Final cooling
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H. Sayed et al., High field — low energy muon ionization cooling channel, Phys. Rev. ST Accel. Beams 18, 2015
Fol et al, IPAC22

= Challenge is to get very tight focussing
= Go to high fields (~40 T) and lower momenta

= Causes longitudinal emittance growth

= Chromatic aberrations introduce challenges
= Elaborate phase rotation required to keep energy spread small

= Move to low RF frequency to manage time spread
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Muon Cooling
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RF Test programme, with upgradeable magnet
configuration, to test novel RF technologies

Prototype of a cooling cryostat to
test magnet, absorber and RF integration

Full cooling cryostat with beam

Full cooling lattice with beam
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Proton Driver

Target & Front End

Cooling

International
UON Collider
Collaboration

Acceleration Collider

H™ LINAC Accumulator Comeressor Pion Chicane & Muon Phase

Ring

ing Target Absorber Buncher Rotator

Charge Bunch 6D Final Buncher Pre-
Separation ~ Merge Cooling Cooling accelerator

u
My

SC LINAC RLA 1,2 RCS 1,2,3 &4 3 TeV Collider
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= MW-class proton driver - target
= Pions produced; decay to muons
= Muon capture and cooling

= Acceleration to TeV & Collisions

= Designed for high energy while maximising luminosity

Luminosity is key
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Muon source
& Low energy
Acceleration
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= At higher energy, can use synchrotrons
= Ramp magnets in synchronisation with increasing beam energy
" Need extremely fast ramp < few ms

"= To keep ring compact, use combination of
= Fixed superconducting and
= Pulsed normal conducting magnets

= Shielding components from decay losses
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v‘ Muon Collider - Siting

SC LINAC CERN land

200%25 m, .:"j

.' Targel Cooling j - |RLA1 | Cost range for Muon Collider scenarios
1000%25 m. J ; Langth ZIIN'n.:
V758 Length 1000m. .

I tion Ti
irom RLAZ to SPS

Le ngth 1010 m,

Prevessin Site 7.6 TeV @ CERN _

AAdInternational

[ < RcCu mulatOr

\ [Muon Collider
\ |[RINg Lengtn 10 km.

\-._\ Experimental cavern
TI18
h Length 257 m.
PN el 327ev @ cenn o
AN " |Lenglh 533 m]
R h s f s 4 BCHF 0.0 50 10,0 15.0 0.0 5.0 300 350
Injection Tunnel e
Length 2006 m, | - i I
Experimental cavern, > - o S
i ; ¥ Y y
o s : . -~ 3 -
Meyrin Site RSk e —
.._'%25,’%‘ +« _ Injection Tunnel 2| |emeameeamn o
LINAC 4 T Sy : e A0 e e

= CERN siting has been done
= Muon production system on Prevessin site
= RCS in SPS and LHC rings
= 3.2 TeV and 7.6 TeV options available
= New collider tunnel
= 15 km of new tunnel length required

= Highly desirable to go above 7.6 TeV - possible with FFAs?



MUSIC Detector Concept MAIA Detector Concept
Muon Collider Muon Collider
Simulation Simulation

Hadnonic Caiommerter

Solanaid
Electromagnesic Calonmeter

Silicors Tracker

Muon Syalem
EM Calorimater

= Two detector concepts
= Differ in placement of the solenoid
= Many other differences
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— Hadronic Calorimeter
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Synergy with nuSTORM
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= NuSTORM - “next scale” muon facility
"= FFA-based storage ring (no acceleration)
= Muon production target and pion handling
= Possibly shared with cooling demonstrator
= Aim to measure neutrino-nucleus cross-sections

= E.g. reduce neutrino oscillation experiment resolutions
= Nuclear physics studies

= Sensitivity to Beyond Standard Model physics
E.! ISIS 20
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2020 Update to the European
Strateqy for Particle Physics
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UON Collider

| High-priority future
Initiatives

Al An electron-positron Higgs factory is the highest-priority next collider. For the
longer term, the European particle physics community has the ambition to operate a
proton-proton collider at the highest achievable energy. Accomplishing these compelling
goals will require innovation and cutting-edge technology:

- the particle physics community should ramp up its R&D effort focused
on advanced accelerator technologies, in particular that for high-field
superconducting magnets, including high-temperature superconductors;

« Europe, together with its international partners, should investigate the technical
and financial feasibility of a future hadron collider at CERN with a centre-of-mass
energy of at least 100 TeV and with an electron-positron Higgs and electroweak
factory as a possible first stage. Such a feasibility study of the colliders and
related infrastructure should be established as a global endeavour and be
completed on the timescale of the next Strategy update.

The timely realisation of the electron-positron International Linear Collider (ILC)
in Japan would be compatible with this strategy and, in that case, the European
particle physics community would wish to collaborate.

B. Innovative accelerator technology underpins the physics reach of high-energy
and high-intensity colliders. It is also a powerful driver for many accelerator-based

fields of science and industry. The technologies under consideration include high-field
magnets, high-temperature superconductors, plasma wakefield acceleration and other
high-gradient accelerating structures, bright muon beams, energy recovery linacs.

The European particle physics community must intensify accelerator R&D and
sustain it with adequate resources. A roadmap should prioritise the technology,
taking into account synergies with international partners and other communities
such as photon and neutron sources, fusion energy and industry. Deliverables for
this decade should be defined in a timely fashion and coordinated among CERN
and national laboratories and institutes. 23



P5 Report

Recommendation 1: As the highest priority independent of the budget sce-
narios, complete construction projects and support operations of ongoing
experiments and research to enable maximum science.

Recommendation 2: Construct a portfolio of major projects that collectively
study nearly all fundamental constituents of our universe and their interactions,
as well as how those interactions determine both the cosmic past and future.

Recommendation 3: Create an improved balance between small-, medium-,
and large-scale projects to open new scientific opportunities and maximize
their results, enhance workforce development, promote creativity, and com-

—Rete on the world staae,

Recommendation 4: Support a comprehensive effort to develop the resourc-
es—theoretical, computational, and techneolegical—essential to our 20-year
vision for the field. This includes an aggressive R&D program that, while
technologically challenging, could yield revolutionary accelerator designs
that chart a realistic path to a 10 TeV pCM collider.

Recommendation 5: Invest in initiatives aimed at developing the workforce,
broadening engagement, and supporting ethical conduct in the field. This com-
mitment nurtures an advanced technological workforce not only for particle
physics, but for the nation as a whole.

Recommendation 6: Convene a targeted panel with broad membership across
particle physics later this decade that makes decisions on the US accelera-
tor-based program at the time when major decisions concerning an off-shore
Higgs factory are expected, and/or significant adjustments within the accel-
erator-based R&D portfolio are likely to be needed. A plan for the Fermilab
accelerator complex consistent with the long-term vision in this report should
also be reviewed.

& Science & Technology Facilities Council

International
UON Collider
Collaboration

24



P5 Report - Muon Shot

2.3
The Path to 10 TeV pCM

Although we do not know if a muon collider is ultimately feasible, the road toward it
leads from current Fermilab strengths and capabilities to a series of proton beam improve-
ments and neutrino beam facilities, each producing world-class science while performing
critical R&D towards a muon collider. At the end of the path is an unparalleled global

facility on US soil. This is our Muon Shot.
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Submissions to 2026 ESPPU
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= MuC ESPPU submission
= 451 authors
= UK - Discussion of not-FCCee concepts in second round
submission (meeting on Monday 28t)
= My opinion:
= Strong consensus to keep open other options
= Concept of “straight to FCChh” presented by UK-ECFA
= Strongly challenged by the community

= Document to be submitted end of May
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l Cost and time scale

Muon Collider
—pos| o, pgosl | . 0, o 0 , powl , . . goa , .,  posol | , . gess| , | oso] |
. . Technically Limited Timeline

Technology demonstration Civil engineering
Optimisation Production
Installation & commissioning Shutdown 1 Shutdown 2
Project Particle species CM Energy [TeV] Wall plug power [MW] New Tunnel Cost [GCHF] Luminosity [10734]
CLIC e+e- 0.38 166 11.4 7.2 4.5
1.5 287 29 7.2+6.5 3.7
CEPC @ 30 MW SR et+e--»7Z 0.091 203 100 4.6 115
ete- - tt 0.36 358 100 4.6 0.5
c”3 e+e- 0.25 110 8 1.3
3 320 33 14
Muon Collider @ CERN mu+mu- 3.2 113 12.2 0.9
7.6 172 15 16.9 7.9
FCCee e+e- 0.091 222 97 15.32 144
0.365 357 97 15.32 1.45
FCChh pp 84.6 355 97 18.9+FCCee 30
HALHF e+e- 0.25 106 4.9 3.8 1.2
0.55 218 8.4 6.3 2.5
LEP3 e+e- 0.091 250 0 3.2 44
0.23 250 0 3.2 1.8

LHeC pe- 0.05+7 220 1.6 2.3



Technology applications
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= High field solenoids have many important application ﬁ
= Developing collaboration with fusion experts
= MRI magnets
= Muon beam techniques have application in many other
fields
= Muon spin resonance (muSR)
= Muon tomography
= Delivery of such a muon beam is a unique achievement -
we don’t know what is the impact!
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Synergy with ISIS
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Low energy, low emittance cooling system under study withaboration
ISIS

Potential for significant gains in cost and performance of the
muon cooling system

Applicable to muSR and other beamlines
= Potential significant gain in effectiveness of these instruments
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Final Word
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= The muon collider
= Far higher energy than et*e- colliders
= Far smaller footprint than equivalent proton colliders
= More power efficient, more cost efficient
= Many technical challenges
= All are manageable with current or near-to-current technologies
= Must demonstrate practical solutions
= Muon collider has potential to advance particle physics by
many decades
= We must now deliver it
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