Comprehensive Paper: Accettura, C. et al. Towards a muon collider. Eur. Phys. J. C 83, 864 (2023).

Detectors for Muon Collider

Karol Krizka

UON Collider Collaboration April 30, 2025

UK Muon Collider

The Physics

Will a Muon Collider satisfy the physics goals?

- Precision Higgs
 couplings
- BSM at higher energies

Muons are elementary = full beam energy used in collision

100 TeV pp \approx 10-20 TeV $\mu\mu$

Vector Boson Fusion (x << 1)

Muon collider is a vector-boson collider

Event Counts

A few common BSM signals (left) and backgrounds (right).

Buttazzo, Franceschini, Wulzer

Couplings and Higgs Width

	HL-LHC	ILC (500)	FCC-ee/hh	μC (10 TeV)
hZZ	1.5	0.17	0.12	0.33
hWW	1.7	0.20	0.14	0.10
hbb	3.7	0.50	0.43	0.23
hyy	3.4	0.58	0.44	0.55
hgg	2.5	0.82	0.49	0.44
hcc	-	1.22	0.95	1.8
hττ	1.8	1.22	0.29	0.71
hyZ	9.8	10.2	0.69	5.5
hμμ	4.3	3.9	0.41	2.5
htt	3.4	2.82	1.0	3.2
Γ _{tot}	5.3	0.63	1.1	0.5

- >10 TeV μ C required for Higgs physics
- Precision competitive with FCC-ee/hh
 - Except couplings with small BR's

Higgs Self-Coupling (SM DiHiggs)

collider	Indirect- h	hh	combined	
HL-LHC 78	100-200%	50%	50%	
ILC_{250}/C^3-250 51 52	49%	_	49%	
ILC_{500}/C^3-550 51 52	38%	20%	20%	
$CLIC_{380}$ 54	50%	—	50%	
$CLIC_{1500}$ 54	49%	36%	29%	
$CLIC_{3000}$ 54	49%	9%	9%	
FCC-ee 55	33%	_	33%	
FCC-ee (4 IPs) 55	24%	_	24%	
FCC-hh 79	-	3.4- $7.8%$	3.4 - 7.8%	Multi-TeV collider is
$\mu(3 \text{ TeV})$ 64	-	15 - 30%	15 - 30%	required for higgs self-
$\mu(10 \text{ TeV})$ 64	-	4%	4%	coupling

And many more...

Three Challenges

The Detector

Is the collision environment clean for precision physics?

 How to deal with Beam Induced Background

The MUSIC Detector

Beam Induced Background

• BIB = muon beam decays and strike the detector

Several main mitigation

- 10° tungsten nozzle to shield from beam decay products
- Precision timing information from detectors

All-Silicon Tracking Detector

Radiation Damage From BIB

Plots from 1.5 TeV detector concept.

April 30, 2025

13 UK Muon Collider

The Scale of BIB

	ITk Hit Density [mm ⁻²]	MCC Equiv. Hit Density [mm ⁻²]
Pix Lay 0	0.643	3.68
Pix Lay 1	0.022	0.51
Str Lay 1	0.003	0.03

ITk Pixels TDR, ITk Strips TDR

Object Reconstruction

15 UK Muon Collider

b-jet identification

• Important for Higgs studies.

• Most common decays is into two b-quarks.

by explicit secondary vertex reconstruction

MUSIC Detector Concept

by Machine Learning (ATLAS SALT framework)

Similar challenges at FCChh and μ C, but μ C is easier.

** Sorry for tracking bias.

"Technical" Start Date of Facility (This means, where the 2035 2040-2045 >2045 < 2030 2030-2035 dates are not known, the earliest technically feasible start 2040 date is indicated - such that detector R&D readiness is not 2030 ATLAS/CMS ($\gtrsim LS4$)¹ the delaying factor) LHCb (≳LS4)¹⁾ Muon Collider Belle II 2026 -Panda 2025 **CBM 2025** ALICE LS3 ALICE 3 CLIC²⁾ FCC-hh FCC-eh FCC-ee ILC²⁾ LHeC EC HIKE ~2045 ~2070 Position precision obit ~ 5 ~ 3 ~ 5 ≲5 ≲5 ≲3 ≤10 ≲15 ≲3 ≤3 ≤3 ≲3 ≃ 7 $\simeq 5$ (µm) X/X₀ (%/layer) ~ 0.5 ≃ 0.05 ≈ 0.05 ≲0.2 ≤ 0.1 ≃ 0.5 ≤0.1 ≃ 0.05 $\simeq 1$ $\simeq 0.05$ ≤0.1 ≃ 0.05 ≤0.2 $\simeq 1$ ≲0.1 3.1 Planar/3D/Passive CMOS DRDT Power (mW/cm²) $\simeq 60$ ≃ 20 ≃ 20 $\simeq 20$ ≃ 20 ≃ 20 $\simeq 50$ Vertex Detector³⁾ **≃** 5 ≃ 30 ≃ 0.1 $\simeq 1$ ≲0.1 ≲0.1 $\simeq 6$ ≲0.1 ≃ 0.1 ≃ 0.05 ≃ 0.05 ≃ 0.1 LGADs Rates (GHz/cm²) 50 MAPS Wafers area (")4) 12 12 12 12 12 12 DRDT 3.2 ≲ 0.05 Timing precision σ_t (ns)⁵ 10 100 25 ≲0.05 ≲0.05 25 25 500 25 ≃ 5 ≲0.02 25 ≲0.02 Radiation tolerance NIEL 1 0.5 DRDT3.3 $\simeq 6$ $\simeq 2$ $\simeq 10^2$ $(x \, 10^{16} \, neq/cm^2)$ Radiation tolerance TID ~1 ≃ 0.5 $\simeq 30$ 0.05 (Grad)

Source: The 2021 ECFA detector research and development roadmap (with updates).

Technology demonstrators?

4D tracking, high data rates, rad hard

Muon Collider is competitive with FCC, but "simpler".

Physics

- Increase in activity as part of ESPPU/Snowmass studies.
- 10 TeV collider meets the necessary goals.

Accelerator

• See all other talks today!

Detector

- Beam Induced Backgrounds creates a very unclean environment.
- Two concepts with advanced object reconstruction studies.
 - Created since Snowmass. Shows maturity of framework.
- Lots of progress, but still need to understand effect on physics goals.

BACKUP SLIDES

Our (1.5 TeV) Onion Detector

heavily based on **CLIC** detector

tracking system

- Vertex Detector:
 - double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
 - 25x25 µm² pixel Si sensors.
- Inner Tracker:
 - 3 barrel layers and 7+7 endcap disks;
 - 50 µm x 1 mm macropixel Si sensors.
- Outer Tracker:
 - 3 barrel layers and 4+4 endcap disks;
 - 50 µm x 10 mm microstrip Si sensors.

shielding nozzles

Tungsten cones + borated polyethylene cladding.

UK Muon Collider 20

• 7.5 λ₁.

sensors:

 \rightarrow 22 X₀ + 1 λ₁.

Simulating Beam Induced Background

1)Muon trajectory, decay and transport of products via FLUKA

• Full beam optics present through LineBuilder Interface

2)GEANT simulation of particles entering the detector

1.5 TeV vs 10 TeV

Concept developed at KITP workshop at Santa Barbara

BIB is less of an issue.

But scattered muons from ZZh are more forward (nozzle)

22 UK Muon Collider