Hadron Therapy-UK

The goal of laser-driven ion beam
radiotherapy is to develop well-controlled,
reliable energetic ion beams of very high
guality that can meet stringent medical
requirements with respect to physical
parameters and performance and therefore
represent a viable alternative in an
advancing state-of-the-art for radiotherapy
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Current Status of Proton, carbon
and Helium Facilities Worldwide

Status Proton therapy Carbon therapy Helium therapy
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Potential Advantages of LhARA based lon
Therapy over Conventional lon Therapy

Low-emittance and well-collimated beams are advantageous
In proximal normal tissue-sparing.

Highly-peaked quasi-monoenergetic beams are ideal for fast
energy selection.

High fluence and ultra-short pulse delivery should produce
denser ionization track signatures (spurs, blobs, etc.) in
target tumors, higher linear energy transfer, higher Bragg
peak, and higher radiobiological effectiveness at the micro-
level.

Ease of generating mixed ion beams. e, | BN
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https://www.sciencedirect.com/topics/physics-and-astronomy/fluence

Objective: To Increase the Therapeutic
Index of Radiotherapy
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Hadron Therapy

» Conventional radiation therapy
= photons (x- or y rays) + electrons

« Hadron therapy = Particle radiation therapy
(particles heavier than electrons)
— Protons
— Carbon ions
— Other ions (helium, neon, pions, silicon, iron, etc)



There Is a strong rationale for the clinical
benefit of proton and carbon therapies,
but current evidence iIs limited

Therapy Rationale for clinical benefit

= Deliver a higher, targeted radiation dose
with decreased toxicity to surrounding
tissue compared with photon therapy,
especially near critical structures

" Further increase target tissue damage with
decreased secondary tissue affected
compared with protons

Carbon

= Specific potential benefit with intractable
radio-resistant tumors
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Dose-Depth Profiles
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Plot of Depth-Dose Distribution of 21
MeV Photons vs 148 MeV/u Protons vs
270 MeV/u Carbon in water
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Superior Dose Distribution of Carbon lons
Compared to Protons and Photons

Photons Prtons Carbon

Photons Carbon

Photons Protons Carbon
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Carbon lons Provide Highly Localized Tumor
Deposition of Dose (Sharper Transverse Edge)
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Better Localization

« Tighter deposition in depth (Bragg peak is narrower)
« Transverse deposition is more narrowly collimated
 Less dose to the healthy tissue
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Carbon lons Induce More Lethal Damage Per Unit Dose
than Photons or Protons

1 MeV protons in H>O 1 MeV/u C®%-ions in H,O
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Increased Biological Effectiveness:

Relative Biological Effectiveness is 2-3 times protons
« Reduces # fractionations by ~ 2: greater patient throughput/compliance
« Countermands radio-resistance: non-repairable, double-strand breaks

Production of positrons permits active monitoring using PET % ccen | o
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Cell Survival Based on the LQ model
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Carbon is More Effective In
Killing Cancer Stem Cells
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Objective: To Increase the Therapeutic
Index of Radiotherapy
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Effect of Different Therapies on
Mean Body Dose and Survival
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Objective: To Increase the Therapeutic
Index of Radiotherapy
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The Origins of FLAS
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Hornsey S, Bewley DK. Hypoxia in mouse intestine induced by
electron irradiation at high dose-rates. Int J Radiat Biol Relat
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Koumenis et al 2022

Flash-Proton Radiotherapy Highly Effective in
Controlling Pancreatic Tumor Growth and Reduces
Normal Tissue Toxicity
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Treating Deep-Seated Tumours with
Proton-FLASH

* Problems/challenges:

e Scanning/scattering needed to cover the target
volume

— Dose rate decreases!

« Several beam energies needed to cover the target
volume in depth

— Dose rate decreases!

« Several beams needed for dose conformity
— Dose rate decreases!
— Takes time to change beam angle.
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Objective: To Increase the Therapeutic
Index of Radiotherapy
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TCP for Individual Patients Treated
with Protons
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Voxel-wise TCP Calculation and Overcoming
Hypoxia with Proton Escalation

Proton Dose Proton Dose Proton Escalated Dose

OER = variable l 'l OER = variable I 'l
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Survival of Cells Irradiated with Carbon lons
In Oxic (red curves) and Hypoxic conditions (blue curves)
for Two Different LETs

LET = 88 keV/um LET=151.5 keV/um
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Objective: To Increase the Therapeutic
Index of Radiotherapy
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Keap-Nrf2 Pathway
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KEAP1/NRF2 Mutation Status Predicts Local Failure after
Radiotherapy in Human NSCLC
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Combining lon Therapy with
Immune Checkpoint Inhibitors

Antigen
Presenting
Cell




Objective: To Increase the Therapeutic
Index of Radiotherapy
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Clinical Data for Carbon
mmm

Occular 114  Similar to proton
CNS 4 218  Similar to proton
Prostate 3 1384 Excellent results for

high risk, less toxicity
than proton/photon

HCC 1 64 High local control

Lung (NSCLC) 2 129 Maybe better than
proton

HNC 1 236 High LC - ACC,
melanoma

Chordomas 3 38 Similar to proton



Ongoing Trials for Carbon

e I o N

Prostate Carbon vs. Proton Toxicity Heidelberg

Skullbase 1] 154  Carbon vs. Proton LPFS Heidelberg

Chondrosarc

Skullbase 1 319  Carbon vs. Proton LPFS Heidelberg

Chrodoma

Salivary I 54 IMRT + Carbon boost Safety  Heidelberg

Gland CA

HCC I 33 Carbon MTD Heidelberg

GBM I 150 CRT + Carbon vs. 1yrOS Heidelberg,
Proton boost RTOG

HNC 1 50 TPF + RT + Cetux + LRC Heidelberg

Carbon Boost



What LhARA Needs to Achieve for Clinical Acceptance

LhARA has to deliver a defined number of ions within the therapeutic
energy range with sufficiently stable and reproducible ion beam
parameters.

LhARA's beam transport and delivery system is required for cleaning
the beam from undesired particles and for ensuring beam energy, beam
Intensity, beam direction and field size to deliver a prescribed dose to
the patient

Clinical application of LhARA in radiation therapy demands precise
dosimetric control.

Current dose delivery in clinical irradiation uses one of the two
procedures, pencil beam scanning or a scattering technique. The new
time structure of LhARA's beams with low pulse repetition frequency
requires a new strategy for dose delivery, because the dose has to be
delivered within at least the same (or possibly shorter) treatment time
by a much lower number of pulses compared to conventional ion
beams.

the laser based acceleration leads to pulses with an outstandingly high
pulse dose rate close to the source which may result in an altered
radiobiological response. A different radiobiological effectiveness also
needs more effort to implement in the treatment planning system
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Superior Dose Depth Distribution
& Physical Beam Characteristics

-Higher LET
-Superior RBE
-Low OER
-Narrow penumbra

Physics
-Beam characterization

-Beam heterogeneit)\

Radiobiological Research
-Development of radioprotectors
-Carbon ion interaction with diff tissues

-Metabolism
-Microenvironment
CSCs e
Engineering
-Gantry design

-Miniaturization

Material Science

-Target Production
-Substance lighter than
concrete, but just as

effective
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UK

Increasing the
Patient Experience

-New Lhara lon therapy
-Less toxicity

-Given in short period of time
-Cost effectiveness research

Clinical Biology Research
/Dose limitations

-Toxicity

-Which tumor histologies benefit most
-Does it overcome tumor microenvironment
-Development of new clinical trial design

\Clinical Physics Research
-Dose and treatment planning

-Development of New Treatment Plans
-Absorbed Dose Calculations
-Modeling RBE

STFC/UKRI/ITRF

-Beam Production

-Beam Delivery

-Accelerator miniaturization

-Active and Passive Beam Shaping

Radiology
-lonacoustic Imaging
-Positron imaging
-Dose distribution
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